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ABSTRACT 
Crosshole radar tomography is increasingly being used to characterize the shallow subsur- 

face and to monitor hydrologic processes. Although tomographic inversion provides a subsurface 
model, confidently interpreting the resulting image can be challenging. We conducted a simple 
modeling study to better understand the capabilities and limitations of tomographic inversion. We 
start with a known earth model, simulate a tomography experiment, and invert the synthetic data. 
We investigate the effects of straight and curved ray approximations to wave propagation, regular- 
ization,grid size, and starting model. We also investigate the effects of limited ray coverage 
through the earth model and noise in the data. Understanding the effects of these different meth- 
ods and parameterizations will help us place confidence limits on modeled features to more accu- 
rately reflect our knowledge of the subsurface. 

INTRODUCTION 
Crosshole radar tomography is increasingly being used to characterize the shallow subsur- 

face and to monitor hydrologic processes such as infiltration through the vadose zone and solute 
transport through the saturated zone. While collecting, processing, and inverting radar tomogra- 
phy data is not difficult, interpreting the resulting images with confidence can be a challenge. Are 
parameter estimates accurate, or are they artifacts of the inversion process? What constraints 
should be used in the inversion process to improve results? Methods to determine the quantitative 
resolution, uncertainty, and reliability of tomographic images are greatly needed. 

As a first step towards addressing these issues, we conducted a simple modeling study. We 
start with a known earth model, simulate a tomography experiment, and invert the synthetic data. 
By comparing the inversion results with the starting model, we can improve our understanding of 
the capabilities and limitations of different tomographic inversion methods. 

We used two different inversion algorithms: one straight ray and one curved ray. We also 
investigated the effects of including different types of constraints in the inversion, as well as the 
effects of ray coverage, uncertainty in traveltime picks, model discretization, and starting model. 
Good references on tomography and inverse theory include Menke (1989) and Snieder and 
Trampert(1999). 

The earth model that we selected is representative of the types of features and electrical 
property variations that we expect at the Boise Hydrogeophysical Research Site (BHRS), the 
focus of an intense investigation of geophysical and hydrologic parameter distribution in a hetero- 
geneous, coarse, alluvial aquifer (Barrash et al., 1999; Clement et al., 1999; Peterson et al., 1999). 
The synthetic modeling results in this paper provide insight into the capabilities and limitations of 
different tomography methods and the level of detail that can be reliably interpreted from tomo- 
graphic images of the site. 
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BACKGROUND THEORY 
Matrix algebra provides a convenient way to express forward and inverse modeling prob- 

lems such as travel time tomography. The forward problem is: 
Gm = d, 

where d is the data (vector), G is the kernel function (matrix), and m is the model (vector). The 
data are the projection of the model by the kernel function. The kernel function represents the 
physics of the problem, including boundary conditions and differential equations. 

A solution to the inverse problem is: 

m = G'1d. 
The inversion process involves computing the inverse of matrix G and then multiplying this 

matrix by the data to compute the model. Unfortunately, G can be difficult to compute, particu- 
larly if the matrix is ill-conditioned (small data errors cause large model changes), ill-posed (mix- 
determined) (Snieder and Trampert, 1999), or large (too many parameters for available computer 
memory). In these cases, a weighted, damped, least squares approach is often used to find a solu- 
tion (Menke, 1989): 

mest = <m> +[GTWeG + X2 Wm]" 1GTWe[d-G<m>] 

where mest is the best fitting model, <m> is the starting model, d and G are the data and the kernel 
as before, Wm is the regularization or model weighting matrix, We is the data weighting matrix, 

and X is the weighting factor between prediction error (overdetermined) and solution length 

(underdetermined). The parameter X determines how much the data influences the model versus 

how much the model is constrained by the regularization. For X = 0, the solution depends only on 
the data. For large X values, the solution depends more on the regularization. 

The least squares approach minimizes the L2 norm to determine the optimal solution, i.e., 

Min( !YMF\) $PV- 
where ej are the differences between the observed and calculated data. In the tomography prob- 
lem, the data are first arrival times and we try to minimize the difference between the calculated 
and observed times. 

Tomographie data sets often consist of many measurements. The result is that matrices can 
be large, sparse, and difficult to invert directly. A variety of computational methods have been 
developed to implement matrix inversions, including ART (e. g., Peterson et al, 1985), SIRT (e. 
g., Tweeton, 1988), and LSQR (Paige and Saunders, 1982), which are all iterative solvers. We use 
a straight ray tomographic inversion using SIRT (Tweeton, 1988) and a curved ray inversion using 
LSQR (Aldridge and Oldenburg, 1993). 

FORWARD MODELING 
To test different crosshole traveltime tomography algorithms, we used a finite-difference 

approximation to the eikonal equation (Vidale, 1990) to simulate a crosshole radar tomography 
experiment. The eikonal equation calculates the first arrival travel time of a propagating wave 
through a gridded velocity field. Figure 1 shows the input velocity model. The model is 5 m by 10 
m with a horizontal and vertical grid spacing of 0.05 m. We included several layers, some with lat- 
eral velocity changes, to simulate features that we believe exist at the BHRS. The input velocity 
model consists of high and low velocity zones and thick and thin layers to test the inversion 
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schemes. The upper, layer, 2 m thick, represents the vadose zone with a velocity of 0.140 m/ns. 
Velocities in the saturated zone (2 - 10 m depth) range from 0.070 to 0.095 m/ns. Layers are hori- 
zontal and range in thickness from 0.5 to 2.0 m. The layer at 4.0 to 5.5 m depth includes a low 
velocity inclusion in the center of the model, between 2.0 and 3.5 m on the horizontal scale; at the 
edges of the model, the velocity is 0.090 m/ns while in the center the velocity is 0.070 m/ns. 
Another lateral velocity change is included in the layer between 7.0 and 8.0 m depth. Close to the 
wells, the velocity is 0.080 m/ns while in the center, between 2.0 and 3.5 m on the horizontal 
scale, the velocity is 0.090 m/ns. These horizontal velocity changes are included to determine the 
ability of the inversion methods to image heterogeneity in the subsurface. 

We simulated a traveltime tomography experiment in two wells spaced 3.5 m apart. Travel 
times were computed between 40 shot locations (0.25 m vertical spacing) and 41 receiver loca- 
tions (also 0.25 m vertical spacing). 

We used two forward modeling algorithms to invert the synthetic crosshole traveltime 
data. The first algorithm uses the same forward model scheme as was used to generate the syn- 
thetic data (Aldridge and Oldenburg, 1993). This algorithm can simulate ray-bending at velocity 
contrasts. We also used a straight-ray forward modeling algorithm for comparison (Tweeton, 
1988). In both cases, the simulated tomographic data consists of 1640 first arrival times. 

RESULTS OF INVERSION 
Straight Ray versus Curved Ray Simulators 

Figure 1 shows the input model and a comparison of the straight ray and curved ray inver- 
sions using noise-free data. Velocity values were determined on a 0.1 m grid, and then upscaled to 
0.25 m for display. The straight ray inversion smooths the velocity in each pixel using an average 
of its near neighbors to compensate for the fine grid spacing. The curved ray method uses regular- 
ization to condition the problem; in this simulation, we used a flatness constraint with 10:1 hori- 
zontal to vertical regularization. 

Results show that the curved ray simulator is better able to locate boundaries than the 
straight ray simulator. The curved ray model has a sharp velocity change from about 0.14O m/ns 
in the upper 2 m to velocities less than 0.100 m/ns in the lower 8 m of the model. This boundary is 
smeared in the straight ray model. Both models also provide a hint of the alternating high and low 
velocities with depth. Again, the boundaries are more distinct in the curved ray model. The mod- 
els also show lateral velocity changes in the center of the domain, although the boundaries of the 
inclusions are not particularly well resolved. 

How do the two inversion solutions compare to the true velocity field? The straight ray 
model has a velocity range of 0.059 to 0.150 m/ns, somewhat greater than the true range, with an 
average misfit error of 0.005 ns and an RMS misfit error of 0.102 ns. The range of error values for 
the straight ray model is -0.509 to 0.539 ns. The curved ray model has a velocity range of 0.069 to 
0.157 m/ns, an average misfit error of -0.012 ns, and an RMS error of 0.239 ns. The misfit range 
for the curved ray model is -0.863 to 1.836 ns. Both methods have an average error near zero, but 
the curved ray method has a larger RMS error indicating a larger variance in the misfit error. 

To gain insight into how the two inversion methods partition error along ray paths, we 
generated plot of ray density for both methods. Ray density is defined as the total raypath length 
per slowness cell divided by the grid interval. Figure 2 show the ray density of the two inversion 
methods. For the straight ray inversion, more rays pass through the center of the model than at the 
edges. The ray coverage decreases systematically away from the model's center. This coverage 
difference will cause the inversion algorithm to assign errors to the less densely sampled cells 
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Figure 1. Velocity models from straight and curved ray inversion methods. The true model is on the left. The inverted 
model from the straight ray inversion method is in the center and the curved ray inversion model is on the right. The 
grayscale indicates velocities in m/ms. The stars are sources and the circles are receivers. White spots in the figures 
above 2 m are where velocities are greater than 150 m/ms, or where rays do not sample the grid, as along the bottom 
of the straight ray model. 

because they affect less of the travel times. Thus, the edges of the model are less constrained than 
the middle and, consequently, our uncertainty is greater for the edges. From the ray coverage, we 
have more confidence in the modeled features in the region between 3 to 7 m depth and 1.5 to 4 m 
distance. 

The curved ray inversion has a much different ray coverage character. Thin zones of 
higher coverage exist in the model. High ray density zones extend horizontally, most notably at 
1.5 to 2.0 m. Another strong horizontal band is between 8.5 to 9 m. These bands correspond to the 
high velocity zones in the input model. Diagonal zones of high ray density also exist in the ray 
coverage. As in the straight ray case, the edges of the model are sampled by fewer rays. Again, 
our confidence in the middle portion of the model is higher. 

Noting the ray coverage, we would still have confidence in the models' layering, but we 
would be less certain of the lateral velocity changes, especially at the model boundaries. We could 
improve the ray coverage at the edges by increasing our cell size, thus including more data per 
cell. However, we must have a sufficiently fine grid spacing to accurately trace the rays in the 
finite-difference eikonal approximation and to adequately resolve model features. Another 
method to improve confidence along boundaries is to incorporate information from vertical radar 
profiles (Knoll and Clement, 1999) and geophysical logging. 

The different ray tracing routines in the inversions account for the different inverted veloc- 
ity models. Boundaries are sharper and velocity changes are more distinct in the curved ray 
model. The ray coverage in the curved ray method shows that more rays are concentrated along 
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Figure 2. The ray coverage of the straight ray and the curved ray inversion. The grayscale indicates the changes in ray 
density. White areas are where rays do not sufficiently sample the model. 

the boundaries in the model, especially along large velocity contrasts and high velocity zones. The 
curved rays more accurately model the refraction at the velocity boundaries since, by definition, 
the straight rays can not bend. 

Constrained Inversion: Fixed Velocity Values 
A variety of different types of constraints can be used in our effort to improve the resolu- 

tion and accuracy of tomographic inversions. One type of constraint is to force specific velocity 
values on the inverse solution, such as specific layer properties. Tweeton (1988) has shown the 
value of including layer constraints in the inverse procedure. We ran a straight ray simulation, 
shown in Figure 3, to demonstrate this point. Constraining the upper 2 meters to be laterally con- 
stant produces a model that more sharply defines the water table boundary. The transition zone 
from the high velocity upper layer to the slower layer beneath is more sharply defined both verti- 
cally and horizontally. Moreover, the layering beneath the water table is more clearly defined as 
are the velocity changes in the two heterogeneous velocity layers. This relatively simple assump- 
tion, constant lateral velocity in the vadose zone, greatly improves the model reconstruction. 

Constrained Inversion: Regularization 
We also investigated the use of different types of regularization as constraints for the 

curved ray inverse procedure. We inverted the noise-free data using a flatness (first difference) 
constraint and a smoothness (second difference) constraint (Aldridge and Oldenburg, 1993). The 
flatness constraint seeks to find the model that does not contain velocity changes. In other words, 
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Figure 3. Effects of constraining upper layers to imitate the vadose zone. The center figure is inverted with smoothing 
only. In the right figure, the upper 2 m are constrained to have a laterally constant velocity. The grayscale indicates the 
velocity in m/us. Note that the layering in the right figure is sharper and that the lateral velocity changes are more 
apparent and their velocity values contrast more. 

we want a solution with as little change as possible. The smoothness constraint seeks to minimize 
the gradient of the velocity change in the designated direction, that is, we want a solution that has 
small changes in velocity gradient. 

Figure 4 shows the results of the two different constraints on the curved ray inversion. The 
velocity variation is greater horizontally in the smoothness model than in the flatness model. This 
variation reflects the nature of the constraint; the smoothness constraint limits velocity gradient 
changes whereas the flatness constraint limits velocity changes. The ray coverage is similar 
between the two different models. Again, the similarity between the models indicates that the 
inversion is adequately modeling the data and that the choice of regularization constraint is not 
critical, at least for this earth model. 

Effect of Grid Size 
One decision that must be made in parameterizing a tomography problem is the size of the 

modeling grid cells. We used the straight ray algorithm to explore this issue. First, we inverted the 
data on a 0.5 m grid. In figure 5, we compare this result to the model using a 0.1 m cell size. The 
0.5 m model contains larger amplitude velocity variations that are more sharply defined. Although 
the larger grid spacing better replicates the velocity variations, the model contains unreasonable 
velocity fluctuations, especially at the edges. 

Importance of Starting Model 
Another important parameter for curved ray tomographic inversions is the starting model 

for the nonlinear inversion. The inversion process traces rays through the starting model, then 
alters the model to reduce the misfit error. A danger in this iterative method is that the routine 
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Figure 4. The tomogram in the center was computed with a flatness constraint. The tomogram on the right was 
computed with a smoothness constraint. The grayscale indicates the velocity in m/(is. The flatness constraint is the 
first derivative and the smoothness constraint is the second derivative. White regions indicate velocities greater than 
0.150 m/us. 
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Figure 5. Comparing the effects of grid size in the model. The figure in the center was computed using 0.1 m grid 
spacing. The right figure has a grid spacing of 0.5 m. The grayscale indicates the velocity in m/|is. The white regions 
in the upper 2 m represent velocities greater than 0.150 m/us. The white zone at the bottom of the center figure indi- 
cates a lack of ray coverage. 
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finds a local minimum, not the global minimum solution. To test that the solution is near the glo- 
bal minimum of the objective function, we inverted the data using several different starting mod- 
els consisting of a homogeneous medium with a single velocity. We used velocities of 0.05, 0.09 
and 0.20 m/ns to cover the range of realistic velocities for ground penetrating radar studies. The 
resulting tomograms are essentially the same, suggesting that the solution is close to the global 
minimum. 

Effect of Noise 
To investigate the effect of noise, we generated and then inverted two data sets, the first 

with no noise and the second with noise. We also added random noise to each travel time to simu- 
late noisy data. The noise ranged from -0.5 to 0.5 ns. The results for the curved ray inversion are 
shown in Figure 6. Both methods model the noisy data about as well as they did the noise free 
data. The inversion statistics are very similar to the noise-free statistics, except that the RMS error 
values are larger, not an unexpected result. The level of noise that we added is realistic for bore- 
hole radar data (Saintenoy and Scales, personal communication). 

Noise free data 

12      3      4 
Distance (m) 

Noisy data 

12      3      4 
Distance (m) 

0      12      3      4 
Distance (m) 

Figure 6. Comparison of inverting noise-free and noisy data. The two models were inverted with the curved ray algo- 
rithm with identical parameters. The grayscale corresponds to velocities in m/us. Similar features are reconstructed in 
both figures. The noisy data has a larger variance in error misfit. 

Effect of Ray Coverage 
Finally, we study the effects of limited ray coverage on the model. The full data set has 

rays that encompass angles between -70° and 70°. In figure 7, we compare the full data set with 

data whose angular coverage is windowed to those rays between -40° and 40° and another set 

between -10° and 10°. The wider angular coverage better resolves the lateral horizontal velocity 
changes as well as the layer boundaries. As the angular coverage narrows, the lateral resolution 

decreases. In the -10° to 10° case, the model consists of horizontal layers with no apparent lateral 
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changes. With near surface tomography acquisition, wide angular coverages are limited by the 
distance the energy can propagate, not by the geometry of the experiment. 

(-70,70) (-40,40) 
iLl.J,.L..I. 

(-10, 10) 

12      3      4 
Distance (m) 

12      3      4 
Distance (m) 

12      3      4 
Distance (m) 

Figure 7. Effects of limited ray coverage. The full data set is used to compute the tomogram on the left. The angular 

coverage is between -70° to 70° from the horizontal. The tomogram in the center is computed with a limited aperture 

window with rays traveling between -40° and 40°, and the right tomogram has a window of -10° to 10°. The gray- 
scale indicates the velocity in m/us. 

SUMMARY 
We have presented a synthetic modeling study to examine some of the issues that effect 

tomographic inversion of crosshole radar data. We looked at the effects of the forward model, the 
type of model constraints, the grid size, and the starting model. These factors are controlled by the 
inversion routines. We also examined the effect of noise in the data and ray coverage through the 
model. These effects are controlled by the field acquisition, and once the data has been collected, 
we can not change these factors. 

The greatest effect on the inversion results is the choice of the forward model. The curved 
ray method better imaged the vertical and horizontal velocity changes. Another important effect 
on the inversion is the structure imposed on the solution. Inversions with some prior information 
about the structure of the sampled medium were better able to reconstruct the heterogeneities in 
the medium. Both curved and straight ray methods benefited from this type of information. 
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